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Vortex structure and strength of secondary �ows in model
aortic arches
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SUMMARY

A numerical method is developed to study the �ow structures in the aortic arch. The method solves
the incompressible Navier–Stokes equations. It uses a third-order upwind scheme for the convective
terms and the second-order central scheme for the viscous terms. A DDADI time integration is used
for achieving fast convergence. For the unsteady solutions, the second-order Crank–Nicolson method
coupled with the diagonalized diagonal dominated alternating direction implicit scheme (DDADI) time
integration are used. The numerical results show that the method is about 2.5-order accuracy in space
and 1.8-order accuracy in time. Then the method is used to investigate the vortex structure and strength
of secondary �ows in the aortic arch. Four di�erent arch geometries are constructed to see the e�ect
of arch con�guration. Many �ow properties such as pressure drop, vortex strength and separation are
computed and compared among the four arch models. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The �ow round the aortic arch is important research subject recently [1, 2]. Secondary �ow
patterns associated with the generation and transport of vortices will be a fundamental subject.
It is well known that two counter-rotating vortices are generated when �uid �ows around a
single bend. Kilner et al. [2] presented the secondary �ows and the helical �ow pattern by
using magnetic resonance mapping techniques. Black et al. [3] studied these phenomena by
using computational �uid dynamics. They found that an additional bend in the �ow path
could initiate changes on vortex structure and proposed a Kilner’s arch which can change the
normal double-vortices pattern to the single helical �ow pattern. In this paper, four di�erent
parametric models of the aortic arch are constructed to see the e�ect of arch con�guration.
Many �ow properties such as pressure drop, vortex strength, and separation are computed and
compared among the four arch models. Numerical solutions to the incompressible Navier–
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Stokes equations are in greater demand than ever before as the �eld of computational �uid
dynamics increases its importance as an engineering tool. An e�cient code is a key to be
a useful tool for �ow analysis. Therefore, there is a continuing interest in �nding solution
methodologies which will produce results using the least amount of computing time and
CPU memories. This is particularly true for problems with a high Reynolds number. In this
paper, the proposed numerical method is based on an arti�cial compressibility approach which
has been used successfully by a number of other authors [4–6]. The advantages of using
arti�cial compressibility are that it directly couples the pressure and velocity �elds at the same
time level and produces a hyperbolic-dominated system of equations. Since the equations are
hyperbolic dominated, some of the upwind �nite-volume schemes which have recently been
developed for the compressible Euler and Navier–Stokes equations can be utilized. For the time
integration, the second-order Crank–Nicolson method coupled with a DDADI time integration
[7] is used. In the following sections, the details of the arti�cial compressibility method and
its applications in solving the incompressible Navier–Stokes equation for both steady-state and
unsteady problems are given. First a comparison with an analytical solution is performed to
show the space and time accuracy of the method. Then, the �ow structures in the aortic arch
are investigated.

2. NUMERICAL FORMULATION

2.1. Governing equations and arti�cial compressibility method

The conservative form of the steady incompressible Navier–Stokes equations with arti�cial
compressibility parameter is following:
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p and (u; v; w) are the pressure, the Cartesian velocity �, �¿0 is the arti�cial compressibility
parameter and Re is the Reynolds number corresponding to the free-stream velocity. The
steady-state solution of Equation (2.1) achieves divergence-free �ow.

2.2. Space discretization: �nite-volume formulation

Let the three-dimensional computational domain be discretized into a group of hexahedrons
Kijk . In each hexahedron Kijk , �ow variables are stored at the barycentre Cijk and the �ow
conservation is enforced on the boundary surface �i; j; k . The integral form of Equation (2.1)
can be written as

dQijk
dt

=− 1
Vijk

(∫ ∫
�
(E; F;G) · n dA+ 1

Re

∫ ∫
�
(∇�) · n dA

)
(2.2)
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where Vijk is the volume of Kijk . To evaluate the �rst term of the right-hand side of (2.2),
we sum all the �ux vectors on the six boundary surfaces of Kijk .

∫
�
(F;G;H) · n dA= hi−1=2; j; k |si−1=2; j; k |+ hi+1=2; j; k |si+1=2; j; k |

+ hi; j−1=2; k |si; j−1=2; k |+ hi; j+1=2; k |si; j+1=2; k |
+ hi; j; k−1=2|si; j; k−1=2|+ hi; j; k+1=2|si; j; k+1=2|

where hi+1=2; jk is the numerical approximation for the �ux associated with the interface Ai+1=2; jk
and |si+1=2; jk | is the area of the surface Ai+1=2; jk . In order to evaluate hi+1=2; jk using an upwind
scheme, it is necessary to have two �uid dynamic states QLi+1=2 and Q

R
i+1=2 (here, for simplicity,

the notation jk is neglected). The states QLi+1=2 and Q
R
i+1=2 are interpolated from the cell centred

states by means of a third-order partial-upwind scheme [6, 8]. Then the numerical �ux at the
interface Ai+1=2; j; k is written as

hi+1=2 = h(QRi+1=2; Q
L
i+1=2) =

1
2
[F(QRi+1=2) · nx +G(QLi+1=2) · ny
+H (QRi+1=2) · nz + F(QLi+1=2) · nx
+G(QRi+1=2) · ny +H (QLi+1=2) · nz
− �i+1=2 · (QRi+1=2 −QLi+1=2)] (2.3)

Here the (nx; ny; nz) is the outer unit normal at the interface. the value �i+1=2 is de�ned as:
�i+1=2 = max(|UL

n |; |UR
n |) where Un= ui+1=2 · nx+vi+1=2 · ny+wi+1=2 · nz is the contravariant veloc-

ity normal to the surface Ai+1=2. The viscous terms are also computed by using a second-order
�nite-volume discretizations. Since the viscous �ux components are functions of the velocity
gradients, the divergence theorem is used to estimate appropriate values of these gradients on
the cell faces [8].

2.3. Time integrations: DDADI algorithm and Crank–Nicolson method

An implicit DDADI algorithm [7] is used to discretize the remaining time derivative in Equa-
tion (2.2). De�ne a residual as

Resijk =
1
Vijk

∫ ∫
�
(F;G;H) · n dA+ 1

Re∞

∫ ∫
�
(∇�) · n dA

then, Equation (2.2) becomes

dQ=dt=Resijk (2.4)

Let �Qn=Qn+1 −Qn. Using the two time-level scheme, Equation (2.4) can be solved as
�Qn=�t[2Resn+1 − Resn]
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By Taylor expansion, Equation (2.4) can be solved by

[1− 2(@Res=@Q)n�t]�Qn=Resn

Finally use the DDADI scheme to solve �Qn and set Qn+1 =Qn + �Qn. The procedure
converges up to almost divergence-free velocity �elds. For the unsteady solutions, the unsteady
Navier–Stokes equations is discretized by the second-order Crank–Nicolson method. Then the
arti�cial compressibility method coupled with the DDADI algorithm is used to solve the
solutions.

3. NUMERICAL TEST

The accuracy of the present method have been evaluated by solving a test problem for which
the analytical solutions are available as functions of time, space, and Reynolds number. The
solutions of the unsteady �ow are given by the following Equations [9]:

u=−a[eax sin(ay − dz) + eaz cos(ax − dy)]e−d2t=Re

v=−a[eay sin(az − dx) + eax cos(ay − dz)]e−d2t=Re

w=−a[eaz sin(ax − dy) + eay cos(az − dx)]e−d2t=Re

p=−a2 1
2
[e2ax + e2ay + e2az + 2 sin(ax − dy) cos(az − dx)ea(y+z)

+ 2 sin(ay − dz) cos(ax − dy)ea(x+y)]e−2d2t=Re

here a=�=4, d=�=2 and Re=100. The Navier–Stokes equations are solved numerically by
the present method in the cubic domain, [−1; 1]3. The computational domain is divided by N
uniform meshes. Table I shows the spatial errors (L2 norm) of pressure and velocity �elds
at time, T =0:1. The overall order of accuracy in space is around 2.5. Table II shows the

Table I. Spatial errors of pressure and velocity �elds.

N P Order U Order

8 1.5E-3 1.4E-3
16 2.7E-4 2.5 2.4E-4 2.6
24 9.2E-5 2.6 1.4E-3 2.6
32 4.2E-5 2.6 3.8E-5 2.6

Table II. Temporal errors of pressure and velocity �elds.

�t P Order U Order

1.2 5.2E-3 5.6E-3
0.6 1.3E-3 1.9 1.5E-3 1.9
0.4 7.6E-4 1.7 7.4E-4 1.8
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Figure 1. The positions of �rst inlet, �rst outlet, second inlet, and second outlet of the Kilner arch.

Figure 2. (a) Grid of plane arch. (b) Velocity distribution at the �rst outlet.

temporal errors of pressure and velocity �elds at time, T =4:8. It is about 1.8-order accuracy
in time.

4. RESULT AND DISCUSSION

In this section, the �ows in the aortic arches under Re=1000 are investigated. Secondary
�ow patterns associated with the generation and transport of vortices are the main subjects.
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(a) (b)

Figure 3. (a) Grid of bi-curved arch. (b) Velocity distribution at the second outlet.

(a) (b)

Figure 4. (a) Grid of 45◦ arch. (b) Velocity distribution at the second outlet.

Four di�erent arch geometries are constructed. Grid numbers of these four cases are
160× 40× 40:

(1) Plane arch, featuring a arch with the axis curved in one plane.
(2) Bi-curved plane arch, featuring a similar tube with one more 90◦ turning in the same

plane.
(3) 45◦ arch, featuring a plane arch a 45◦ out-of-plane inlet section.
(4) 90◦ arch (Kilner model), featuring a plane arch with a 90◦ out of plane inlet section.

The helical �ow pattern is the main vortex structure for this model. Figure 1 indicates
the positions of �rst inlet, �rst outlet, second inlet, and second outlet of the arch.
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Figure 5. (a) Grid of 90◦ arch. (b) Velocity distribution at the second outlet.

Figure 6. The history of vortices evolution in di�erent sections of Kilner model. At (a) �rst outlet
(b) between �rst outlet and second inlet, and (c) second inlet.

Figure 2 shows the velocity vectors in cross-section of the plane arch model at the �rst
outlet. As expected the model shows the classical pair of counter-rotating vortices, Figure 3
shows the velocity vectors of the bi-curved plane arch at the second outlet. The �ow structures
change from one pair of counter-rotating to two pairs of counter vortices. The 45◦ arch
model demonstrates an unsymmetic vortex pair in Figure 4. The kilner model shows the
generation of a single helical vortex �ow pattern (Figure 5). In this case, a single vortex
accounts for approximately 90% of the cross sectional area. This result consists with the
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Figure 7. Region of separation in bi-curved arch.

result of Black et al. [3, Figure 4(b)]. Figure 6 shows the history of vortices evolution in
di�erent sections of Kilner model. Figure 6(a) is the �rst outlet of the arch. Figure 6(b) is
the position between �rst outlet and second inlet. Figure 6(c) shows the velocity distribution
at the second inlet. Figure 5(b) is at the second outlet. This shows how the helical vortex
grows in the left lower-half region from Figure 6(c) to 5(b). Figures 7 and 8 show the regions
of separation for the bi-curved plane and 45-degree arches. One can see that the region of
separation of bi-curved arch is larger. The Kilner model shows no separation region. Figure
9 shows the swirl angles of three arches at their second outlet. The values of swirl angle of
the Kilner arch are larger. This indicates that the strength of vortex in this model is stronger.
Figure 10 shows the pressure histories of three arch models. One can see that the pressure
drop among the bi-curved, 45◦, and Kilner’s arches, the drop of the Kilner model is the
minimum.
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Figure 8. Region of separation in 45-degree arch.

5. CONCLUSIONS

An algorithm for computing steady-state and unsteady solutions to the incompressible Navier–
Stokes equation is presented. The arti�cial compressibility method allows the equations to be
solved as a hyperbolic dominated system in pseudo time. The use of upwind di�erence makes
the scheme stable. With the use of a DDADI time integration, the method can be run large
time steps and achieves very fast convergence. Comparisons of the compute results with some
analytic solutions show good agreement. The numerical results show that the method is about
2.5-order accuracy in space and 1.8-order accuracy in time. For the �ow in the aortic arch,
the Kilner’s arch achieves smallest pressure drop and doesn’t occur �ow separation in the
whole arch. On the other hand, the bi-curved plane arch gives larger pressure drop and exists
a largest separation region around the second turning section.
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Figure 9. Swirl angles of three di�erent arches: (a) bi-curved, (b) 45◦, (c) Kilner arches.
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